View on GitHub

problem-generator

TD Mk Landscape problem generator

Documentation Pages

File Structures

Configuration file

The input configuration file is used to generate deceptive trap problems with topology parameters in a range. It has the following structure:

    M INCL_START_M EXCL_END_M
    k INCL_START_K EXCL_END_K
    o INCL_START_O EXCL_END_O
    b INCL_START_B EXCL_END_B
    CODOMAIN_CLASS [CODOMAIN_CLASS_PAR...]

where M, k, o, and b are literals and INCL_START_X and EXCL_END_X represent the to be inserted values of the start (incl.) and end (excl.) values for that variable X. CODOMAIN_CLASS is the used codomain class and CODOMAIN_CLASS_PAR are any parameters for the codomain class.

For example, if we use $M \in {1, …, 49}$, $k = 5$, $o = 1$, $b = 1$, and the deceptive trap codomain function:

    M 1 50 
    k 5 6 
    o 1 2 
    b 1 2
    deceptive-trap

As options for the codomain we currently offer: Random, Deceptive Trap, NKq, NKp, and Random Deceptive Trap (a combination of the two). Here we have chosen the deceptive trap function. Note that the deceptive trap codomain function has a randomly generated local optimum and deceptive attractor (its inverse).

Codomain File Structure

The input codomain files should have the following structure:

    M K O B
    CODOMAIN_VALUE_1
    ...
    CODOMAIN_VALUE_LAST

where M, K, O, and B represent the to be inserted values of $M$, $k$, $o$ and $b$, and CODOMAIN_VALUE_1 ... CODOMAIN_VALUE_LAST represent the $M \cdot 2^k$ decimal codomain values, each on a new line.

Problem File Structure

The output problem files have the following structure:

    M K O B
    GLOB_OPT_VAL
    NUM_GLOB_OPT
    GLOB_OPT_1
    ...
    GLOB_OPT_LAST
    CLIQUE_INDICES_1
    ...
    CLIQUE_INDICES_LAST

where GLOB_OPT_VAL represents the global optimum (optima) value, NUM_GLOB_OPT represents the number of global optima, GLOB_OPT_1 ... GLOB_OPT_LAST represent the global optima solutions, and CLIQUE_INDICES_1 ... CLIQUE_INDICES_LAST represent the problem variables in each clique.

An example problem generated:

    2 5 1 1
    1.9
    2
    101000111
    010111000
    5 3 2 1 7
    1 0 6 4 8